Convergence to Weighted Fractional Brownian Sheets*
نویسنده
چکیده
We define weighted fractional Brownian sheets, which are a class of Gaussian random fields with four parameters that include fractional Brownian sheets as special cases, and we give some of their properties. We show that for certain values of the parameters the weighted fractional Brownian sheets are obtained as limits in law of occupation time fluctuations of a stochastic particle model. In contrast with some known approximations of fractional Brownian sheets which use a kernel in a Volterra type integral representation of fractional Brownian motion with respect to ordinary Brownian motion, our approximation does not make use of a kernel.
منابع مشابه
Convergence of finite-dimensional laws of the weighted quadratic variations process for some fractional Brownian sheets
In this paper we state and prove a central limit theorem for the finite-dimensional laws of the quadratic variations process of certain fractional Brownian sheets. The main tool of this article is a method developed by Nourdin and Nualart in [17] based on the Malliavin calculus.
متن کاملAsymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion
The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L toward an explicit limit which only depends on B. This result is somewhat surprisi...
متن کاملAsymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion by Ivan Nourdin
The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L2 toward an explicit limit which only depends on B. This result is somewhat surpris...
متن کاملConvergence of weighted power variations of fractional Brownian motion
The first part of the paper contains the study of the convergence for some weighted power variations of a fractional Brownian motion B with Hurst index H ∈ (0, 1). The behaviour is different when H < 1/2 and powers are odd, compared with the case when H = 1/2 or when H > 1/2 and powers are even. In the second part, one applies the results of the first part to compute the exact rate of convergen...
متن کاملWeighted power variations of fractional Brownian motion and application to approximating schemes
The first part of the paper contains the study of the convergence for some weighted power variations of a fractional Brownian motion B with Hurst index H ∈ (0, 1). The behaviour is different when H < 1/2 and powers are odd, compared with the case when H = 1/2. In the second part, one applies the results of the first part to compute the exact rate of convergence of some approximating schemes ass...
متن کامل